
Eur. Phys. J. B 7, 439–449 (1999) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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2 Institut für Physik, Johannes Gutenberg-Universität Mainz Staudinger Weg 7, 55099 Mainz, Germany

Received: 18 March 1998 / Revised: 29 June 1998 / Accepted: 10 September 1998

Abstract. We investigate the influence of aperiodic modulations of the exchange interactions between
nearest-neighbour rows on the phase transition of the two-dimensional eight-state Potts model. The sys-
tems are studied numerically through intensive Monte-Carlo simulations using the Swendsen-Wang cluster
algorithm for different aperiodic sequences. The transition point is located through duality relations, and
the critical behaviour is investigated using FSS techniques at criticality. While the pure system exhibits
a first-order transition, we show that the deterministic fluctuations resulting from the aperiodic coupling
distribution are liable to modify drastically the physical properties in the neighbourhood of the transition
point. For strong enough fluctuations of the sequence under consideration, a second-order phase transition
is induced. The exponents β/ν, γ/ν and (1−α)/ν are obtained at the new fixed point and crossover effects
are discussed. Surface properties are also studied.

PACS. 05.40.+j Fluctuation phenomena, random processes, and Brownian motion – 64.60.Fr Equilibrium
properties near critical points, critical exponents – 75.10.Hk Classical spin models

1 Introduction

The study of the influence of impurities on phase transi-
tions is a quite active field of research, motivated by the
importance of disorder in real experiments [1–4]. For a dis-
ordered system to reach equilibrium, the time evolution
should be large compared to relaxation processes which
are themselves governed by the dynamics of impurity re-
distributions. In practical experiments, such a situation
can never occur in condensed matter systems and one has
to deal with quenched disorder [5,6].

According to the Harris criterion [7], quenched bond
randomness is a relevant perturbation at a second-order
critical point when the specific heat exponent α of the pure
system is positive. The analogous situation when the pure
system exhibits a first-order phase transition was studied
later. Imry and Wortis, generalizing the Harris criterion,
argued that quenched disorder should soften the transi-
tion and could even induce a continuous phase transi-
tion [8]. Phenomenological renormalization-group studies
inspired from the Imry-Ma argument for random fields [9],
suggest that in two dimensions, an infinitesimal amount
of randomly distributed quenched impurities changes the
transition into a second-order one [10–14], while in larger
space dimensions a finite threshold is necessary to pro-
duce the same effect. The first exhaustive large-scale
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Monte-Carlo study of the effect of disorder at a
temperature-driven first-order phase transition was per-
formed by Chen, Ferrenberg, and Landau [15] who studied
the two-dimensional (2D) eight-state random-bond Potts
model. This model is known to exhibit, in the pure ver-
sion, a first-order transition when the number of states
q is larger than 4 [16], and, the larger the value of q,
the sharper the transition. This property makes the Potts
model a good candidate for testing the effect of quenched
bond disorder. Chen, Ferrenberg, and Landau first showed
that the transition is softened to a second-order phase
transition in the presence of bond randomness, and ob-
tained critical exponents very close to those of the pure
2D Ising model at the new critical point [17]. Since then,
different results obtained independently emerged. While
they confirm the second-order character of the phase tran-
sition, they conclude to a new universality class [18–20].

The essential properties of random systems are
governed by disorder fluctuations usually described by
normally distributed random variables. All physical
quantities depend on the configuration of disorder, and
the study of the influence of randomness requires an aver-
age over disorder realizations. Among the systems where
the presence of fluctuations is also of primary importance,
aperiodic systems have been of considerable interest since
the discovery of quasicrystals [21]. Quasiperiodic or ape-
riodic distributions of couplings strengths appear as an
alternative to quenched bond randomness, albeit built
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in a deterministic way, making any configurational aver-
age useless. Their critical properties have been intensively
studied, especially in the Ising model (for a review, see,
e.g., Ref. [22]). The characteristic length scale in a critical
system is given by the correlation length and, as in the
Harris criterion for random systems, the coupling fluc-
tuations on this scale determines the critical behaviour.
An aperiodic perturbation can thus be relevant, marginal
or irrelevant, depending on the sign of a crossover expo-
nent involving both the correlation length exponent ν of
the unperturbed system and the wandering exponent ω
which governs the size-dependence of the fluctuations of
the aperiodic couplings [23]. In the light of this criterion,
the results obtained in early papers, mainly concentrated
on the Fibonacci and the Thue-Morse sequences (see e.g.
Refs. [24–28]) found a consistent explanation, since, result-
ing from the bounded character of fluctuations, a critical
behaviour which belongs to the pure model universality
class was found in two dimensions.

In the last years, much progress have been made in the
understanding of the properties of marginal and relevant
aperiodically perturbed systems. Exact results for the 2D
layered Ising model and the quantum Ising chain have
been obtained with irrelevant, marginal and relevant ape-
riodic perturbations [29–32]. The critical behaviour is in
agreement with Luck’s criterion, leading to essential singu-
larities or first-order surface transition when the perturba-
tion is relevant and power laws with continuously varying
exponents in the marginal situation with logarithmically
diverging fluctuations. A strongly anisotropic behaviour
has been recognized in this latter situation [33–35].

The effect of quasiperiodic and aperiodic distributions
of exchange couplings at first-order phase transitions has
only recently been investigated. It was shown that the
transition remains first-order for the eight-state Potts
model on a quasiperiodic tiling [36], while a finite-size scal-
ing study using Monte-Carlo simulations has shown strong
evidences in favor of a second-order phase transition for
the “Paper-Folding” aperiodic perturbation [37]. In the
present paper, we report an extensive Monte-Carlo study
of the influence of aperiodic modulations of the coupling
strengths on the nature of the phase transition in the 2D
eight-state Potts model. We are interested in both bulk
and surface properties, and several aperiodic sequences
are considered.

The paper is organized as follows: in Section 2, after a
summary of the essential properties of aperiodic sequences
and a presentation of the layered structure of the system,
the critical point of the models is exactly located through
duality. A qualitative description of the phase transition
is given in Section 3 from a numerical study of the tem-
perature dependence of some physical quantities. Eventu-
ally Section 4 contains the results of a Finite-Size Scaling
(FSS) analysis.

2 Layered aperiodic structure and details
of the Monte-Carlo simulations

The Thue-Morse sequence is an example of aperiodic
succession of digits fk = 0 or 1 leading to bounded

fluctuations. It may be defined as a two digits substitution
sequence which follows from the inflation rule

0→ S(0) = 01, 1→ S(1) = 10, (1)

leading, by iterated application of the rule on the
initial word 0, to successive words of increasing lengths:
{fk} = 0 1 1 0 1 0 0 1 . . . It is well-known that most of
the properties of such a sequence can be characterized by
a substitution matrix whose elements Mij are given by

the number n
S(j)
i of occurrences of digits i in the substi-

tution S(j) [38]. The largest eigenvalue of the substitu-
tion matrix is related to the length of the sequence after
n iterations, Ln ∼ Λn1 , while the second eigenvalue Λ2

governs the behaviour of the cumulated deviation from
the asymptotic density ρ∞ = f̄k:

L∑
k=1

(fk − ρ∞) ∼| Λ2 |
n∼ (Λω1 )n, (2)

where the wandering exponent is defined by:

ω =
ln | Λ2 |

lnΛ1
· (3)

The spin system considered in the following is a layered
two-dimensional 8-state Potts model. The Hamiltonian of
the system with aperiodic interactions can be written

−βH =
∑
(i,j)

Kijδσi,σj , (4)

where the spins σi, located at sites i, can take the val-
ues σ = 1, 2, . . . , q, the sum goes over nearest-neighbour
pairs, and the coupling strengths are allowed to take two
different values K0 = K and K1 = Kr. They are dis-
tributed according to a layered structure i.e. the distribu-
tion is translation invariant in one lattice direction, and
follows the aperiodic modulation {fk} in the other direc-
tion: in layer k, both horizontal and vertical couplings
take the same value Krfk . This layered structure is remi-
niscent in the shape of the correlated clusters obtained by
Monte-Carlo simulations (Fig. 1).

Particular choices of coupling distribution make it pos-
sible to determine exactly the critical point by duality
arguments [37]. Consider a system of N layers with a
distribution {fk}, made from a succession of vertical-
horizontal (V-H) bonds when read from left to right
(Fig. 2), and let us write its singular free energy den-
sity fs(K0,K1; {fk}). Under a duality transformation,
the strong and weak couplings Ki are, respectively,
replaced by weak and strong dual couplings K̃i, where

eK̃i − 1 = q/(eKi − 1). Since a vertical bond on the orig-
inal lattice becomes horizontal on the dual system, the
same V-H bond configuration is recovered for the trans-
formed system when the distribution is read from right to
left, and one gets the same type of system, but a reverse
distribution {fL+1−k}. The free energies of the two sys-

tems are equal: fs(K0,K1; {fk}) = fs(K̃0, K̃1; {fL+1−k}).
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Fig. 1. Typical Monte-Carlo configurations (system of size
256 × 512) in the high-temperature phase (K0 = 0.3), in the
neighbourhood of the critical point (K0 = 0.5 and K0 = 0.6),
and in the low-temperature phase (K0 = 0.7). The layered
structure of the system is clearly visible.

The sequences considered here have the property that
the reverse distribution corresponds to the original one
after exchange of perturbed and unperturbed couplings
K1 ↔ K0:

fs(K̃0, K̃1; {fL+1−k}) = fs(K̃1, K̃0; {fk}). (5)

The system being thus self-dual, the critical point, if
unique, is exactly given by the critical line (K0)c = (K̃1)c
of the usual anisotropic model [39,40]:

(eKc − 1)(eKcr − 1) = q. (6)

One should mention that the required symmetry property
of the sequences possibly holds after omitting the last digit
which simply introduces an irrelevant surface effect.
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3

4
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1
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Fig. 2. Layered structure of the system and its transformation
under duality (above). The critical line in the coupling space
is also shown (below).

The fluctuations of the coupling strengths per bond at
the correlation length scale ξ induce a thermal perturba-
tion 〈δt〉 ∼ t−ν(ω−1), which has to be compared to the
deviation from the critical point t. The resulting pertur-
bation has a crossover exponent Φ = 1 + ν(ω − 1) and
is relevant when Φ > 0. This criterion, first obtained by
Luck [23], founds its justification at a critical point, i.e.
when the correlation length of the pure system diverges
as the transition point is approached. The question of its
application at first-order phase transitions is not yet clear.
The purpose of this paper is to report some results in this
situation. The eight-state Potts model has the advantage
of undergoing a strong first-order transition in the pure
case, and has been already intensively studied by several
techniques with random bonds [17–19].

In the following, we consider three different aperiodic
sequences and a periodic system (PS) with the regular
succession of couplings K1, K0, K1, K0, ..., in which the
transition is surely first-order. This system constitutes a
reference for the first-order type behaviour and presents



442 The European Physical Journal B

Table 1. Substitution rules for the aperiodic sequences con-
sidered in the text.

Sequence substitutions wandering

exponent

Thue-Morse (TM): 0→ 01, ωTM = −∞

1→ 10.

Paper-Folding (PF): 00→ 1000, ωPF = 0

01→ 1001,

10→ 1100,

11→ 1101.

Three-Folding (TF): 0→ 010, ωTF = 0

1→ 011.

the advantage of having the same value for the critical
coupling (at fixed r) than the aperiodic sequences consid-
ered. The substitution rules for the aperiodic sequences
studied in the paper are given in Table 1. Details on
their properties can be found in references [29,33]. We
first performed preliminary runs (to be presented in the
next section) for different values of the temperature, and
then intensive Monte-Carlo simulations at criticality on
two-dimensional square lattices of sizes L× 4L (PF, TM,
PS) or L × 3L (TF), using the Swendsen-Wang cluster
algorithm [41]. This technique is known to be very effi-
cient to study second-order phase transitions, since it is
less affected by the critical slowing down than conven-
tional Metropolis algorithm. At first-order phase transi-
tion points, other methods can be used to improve the ef-
fectiveness, but we favoured the use of the same algorithm
to study the different regimes, increasing the number of
Monte-Carlo iterations when necessary in order to obtain
reliable results. The multi-spin coding technique has also
been used to speed up the simulations [42]. The geometry
L× pL allows a sufficiently large number of rows in order
to explore the aperiodic structure at long enough length
scales and the value of p has been chosen with respect to
the symmetries of the sequences. The boundary conditions
are periodic in the short direction (L) and free or fixed in
the long direction (pL)1.

With these boundary conditions, translational invari-
ance holds in the vertical direction, and a local order
parameter is defined by the majority orientation of the
spins at column j [45]:

m(j) =
qρmax(j)− 1

q − 1
, Mj ≡ 〈m(j)〉. (7)

Here, ρmax(j) = maxσ[ρσ(j)], where ρσ(j) is the density
of spins in the state σ at column j and 〈. . . 〉 denotes the
thermal average over the Monte-Carlo iterations. The sys-
tems under consideration are highly inhomogeneous, as it
can be seen in Figure 3, so, in order to reduce fluctuations,

1 The details of the simulations at the critical point (sizes,
boundary conditions, autocorrelation time, # of MC itera-
tions) are given in Table 2.

Table 2. Details of the typical parameters used in the
Finite-Size Scaling Monte-Carlo simulationsa and energy auto-
correlation time in the case r = 5. Sizes L = 2n or 3n between
the limits indicated in the table have been used.

Sequence size(b) # MCS/spin(c) τE

min max

PS 8 to 256 2× 105 to 3× 106 7.3 651.1

TM 8 to 2048 1× 105 to 4× 106 6.7 141.4

PF 8 to 2048 3× 105 to 4× 105 6.7 8.8

TF 3 to 2187 2× 105 to 2.5 × 105 4.5 18.2

a5000 iterations (in MCS/spin) have been discarded.
bThe values indicated correspond to the largest size pL (hori-
zontal direction) with p = 4 (PS, TM, PF) and p = 3 (TF).
cThe same numbers of MC iterations have been used for the
two types of boundary conditions (free and fixed in the hori-
zontal direction).
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Fig. 3. Temperature dependence of the order parameter profile
in the case of the Thue-Morse sequence.

we studied average quantities, e.g.

m =
qρmax − 1

q − 1
, M ≡ 〈m〉, (8)

where ρmax has the same meaning as above, over the whole
system and is not restricted to a given row. The suscepti-
bility is obtained as usually via the fluctuations of magne-
tization χ = KpL2(〈m2〉 − 〈m〉2), and we also computed
the energy density

E =
1

2KpL2

〈∑
(i,j)

Kijδσi,σj

〉
, (9)

where the prefactor ensures a normalization to 1. Local
properties at the surface have also been calculated, e.g.
M1 = 〈m(1)〉.
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Fig. 4. Temperature dependence of the average magnetiza-
tion, susceptibility, and magnetization cumulant for the TM
sequence (r = 5). The different symbols correspond to simula-
tions of systems of sizes 8× 16 (◦) to 256× 512 (×).

3 Off-critical point behaviour

In this section, we give a qualitative description of the
order of the phase transition. For this purpose, we
performed preliminary MC simulations over a range of
values of K for a system of size L× 2L (L from 8 to 256,
TM and PF sequences), and determined the temperature
dependence of the physical quantities. The behaviour of
the average magnetization, susceptibility, and Binder cu-
mulant of the magnetization for the TM and PF sequences
at r = 5 are shown in Figures 4 and 5, respectively.

As well-known in Monte-Carlo simulations, it is dif-
ficult to observe, in the numerical data, a jump of the
order parameter at the transition point of a first-order
phase transition, and similarly the δ-like behaviour of the
susceptibility cannot easily be distinguished from a pure
power-law, so we report here also the results for the mag-
netization cumulant [46]. As a consequence of the highly
inhomogeneous systems under consideration, these cumu-
lants exhibit a quite complicated structure, but their be-
haviour already gives an idea of the nature of the tran-
sition for the two sequences. One can indeed observe in
Figure 4 (TM) that a narrow well appears in the vicinity
of the transition point and becomes deeper as the system
size increases. This should be the signature of a first-order
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Fig. 5. Temperature dependence of the average magnetization,
susceptibility, and magnetization cumulant for the PF sequence
(r = 5). The different symbols correspond to simulations of
systems of sizes 8× 16 (◦) to 256× 512 (×).

phase transition, while in Figure 5 (PF) there is no analo-
gous significant trend. The direct comparison between the
two sequences also shows that the variation of the mag-
netization and of the susceptibility close to the critical
coupling is sharper for TM than PF.

A criterion to analyse the order of phase transitions,
from the observation of the way the non-analytic be-
haviour develops as the critical point is approached, has
recently been proposed [47]. Singular quantities, like the
susceptibility, are response functions with diverging non-
analytic behaviour in the thermodynamic limit. In the
scaling region, there exists a certain interval where such
functions are decreasing at first-order transitions, leading
to crossings of the rescaled curves which evolve towards a
δ-like behaviour, while they increase with the size of the
system in the neighbourhood of Kc at second-order transi-
tions (power-law behaviour). This is illustrated in Figure 6
where the case of Thue-Morse sequence belongs to the
first situation, while Paper-Folding corresponds to the sec-
ond one. For this latter perturbation, typical Monte-Carlo
simulations are shown in Figure 1. In the disordered phase,
the layered structure of the correlated clusters becomes
apparent as the system approaches the transition point,
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Fig. 6. Rescaled susceptibility with respect to the size-
dependent critical coupling Kc(L) for TM and PF sequences
at r = 5. Three sizes (64× 128, 128× 256 and 256× 512) have
been used. In the case of TM, one observes a behaviour which
approaches a δ-function, while a power-law is obtained for PF.

where these clusters begin to grow in the perpendicular
direction, leading to a second order critical point in the
thermodynamic limit.

Similar qualitative observations were reported in
reference [37], where temperature-dependent effective ex-
ponents, for average magnetization and susceptibility,
were computed by comparing the data at two different
sizes L and L′ = L/2: in the case of the magnetization for
example, assuming a scaling formML(t) = L−β/νM(Ltν),
where t =|K −Kc | and M(x) is a scaling function, the
quantity

XL(t) =
lnML/ML′

lnL/L′
(10)

expanded in powers of Ltν close to Kc leads to

XL(t) ' −
β

ν
+

Ltν

2 ln 2

M′(Ltν)

M(Ltν)
+O(L2t2ν), (11)

which defines an effective exponent which evolves towards
−β/ν as the critical point is approached and in the ther-
modynamic limit. In the case of the TM sequence, the
successive estimates of β/ν = d − yh and γ/ν = 2yh − d
evolve towards the values 0 and 2. This is character-
istic of a first-order phase transition, since the scaling
dimensions associated to the temperature and magnetic
field, yt and yh, respectively, take a special value equal
to the dimension d of the system [48]. In the case of the
PF sequence, the behaviour is drastically different, and
these effective exponents evolve towards non trivial values
around 0.5 and 1.
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Fig. 7. Energy autocorrelation time τ at Kc (r = 5). For TM,
the dashed line is a fit to an exponential behaviour, while it is a
power-law fit for PF (z ∼ −0.04) and TF (z ∼ 0.12) sequences.
The data corresponding to the periodic system have not been
fitted.

4 Finite-size scaling

4.1 Dynamical exponent

The conjectures of the previous section have to be con-
firmed by a FSS analysis. As well-known in Monte-Carlo
simulations, the energy auto-correlation time τE is a good
test to know about the order of the transition. In Table 2,
we have given the characteristic values of τE for different
sequences and sizes at the critical point. The number of
MC iterations is always of order 104τE to ensure reliable
results. The autocorrelation time is shown in Figure 7 in
a semi-logarithmic scale.

The numerical data for PF and TF sequences can be
fitted by a power-law τE ∼ Lz, with a very small dy-
namical exponent presumably linked to a logarithmic be-
haviour, while in the case of TM, τE is exponentially di-

verging τE ∼ Ld/2e2σLd−1

where σ is an order-disorder
interface tension. These results support strong evidences
that in the case of Paper-Folding and Three-Folding se-
quences, the fluctuations are strong enough to soften the
transition to a second-order regime. In the case of Thue-
Morse, even if the autocorrelation time, compared to the
periodic case, is lowered by the fluctuations, the transition
remains first-order. We note that the data corresponding
to the PS were not fitted since one has to go to strongly
first order transitions (q = 15) to observe the predicted
exponential behaviour in the pure system [49].

4.2 Bulk properties

We can now enter upon a more refined characterization of
the phase transition in the two regimes. Since the critical
point is exactly known, FSS techniques are well indicated
to get accurate results. We made different series of simu-
lations with free-free (f |f), fixed-fixed (F |F ), and mixed
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(f |F ) or (F |f) boundary conditions (BC) in the horizontal
direction. From all simulations we can extract the singular
behaviour of the magnetization and of the susceptibility,
since there is no regular contribution and, at the critical
point we can write

M(Kc, L) = AML
−β/ν, (12)

χ(Kc, L) = AχL
γ/ν, (13)

where AM and Aχ are non-universal critical amplitudes.
On the other hand, the four series of simulations are nec-
essary in order to extract the singularity associated to
the energy density which contains a regular part includ-
ing both a bulk E(0) and a surface E(−1) ×L−1 contribu-
tion [33,50]. This latter part must be split in two terms,
since the two surfaces are different. We thus have2

E(l|r)(Kc, L) = E(0)(Kc, L)

+ (E
(−1)
l (Kc, L) +E(−1)

r (Kc, L))L−1

+A(l|r)L
(α−1)/ν + . . . (14)

where (l|r) specifies the BC’s (free or Fixed) for the left
and right surfaces. We note that our simulations being
performed in a cylinder geometry, the Euler number van-
ishes, and thus there is no lnL term in the free energy
[51,52]. The asymptotic values of the bulk energy density
with different BC’s are the same in the thermodynamic
limit, but the amplitudes of the finite-size corrections
being different, the regular contributions cancel in the
combination:

∆E(Kc, L) = E(F |F ) +E(f |f) −E(f |F ) −E(F |f)

= [A(F |F )+A(f |f)−A(f |F )−A(F |f)]L
(α−1)/ν

(15)

leaving a pure power-law.
The scaling dimensions can be deduced from log-log

plots of the different quantities vs. the system size. In the
case of the Thue-Morse sequence, a crossover appears, as
the size increases, towards a behaviour which resembles
the periodic one, characterized by a vanishing exponent
for the magnetization. This effect is visible in Figure 8
where the evolution of size-dependent effective exponents
is shown. Similarly, after the crossover regime, the sus-
ceptibility is described by an exponent γ/ν close to the
value d = 2. The behaviour of the energy density dif-
ference exhibits log-periodic oscillations, characteristic of
systems with discrete scale invariance. It makes more dif-
ficult a quantitative analysis3, but a tendency to a de-
creasing slope for the largest size is nevertheless observed.

Certainly, a careful analysis is needed to avoid the
crossover effects from small sizes to the true fixed point

2 We note that the singular surface terms being less diver-
gent, they only add a correction to scaling.

3 The discrete rescaling factors for the different sequences
take the values: 4 (TM), 2 (PF), and 3 (TF).
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Fig. 8. Effective size-dependent exponents associated to the
susceptibility and magnetization in the case of TM sequence
for different values r = K1/K0 = 0.2, 5, and 10, of the coupling
ratio (note that r = 0.2 corresponds to a perturbation of the
same strength than r = 5). The error bars correspond to the
standard deviations of the corresponding power-law fits.

behaviour in the infinite lattice size limit, so we define
the following procedure: from the log-log curves between
pLmin and pLmax, one determines an effective exponent
x(Lmin) for each quantity; then the smaller size is canceled
from the data and the whole procedure is repeated until
only the three or four largest sizes remain. The effective
exponent is then plotted against L−1

min. This prescription
makes apparent the crossover effects and enables us to
identify unambiguously the asymptotic regime4. Different
values of the aperiodic perturbation (r = 0.2, 5, and 10)
are shown in Figure 8 in the case of TM sequence. At small
sizes, the system is still strongly under the influence of the
fluctuations induced by the aperiodic distribution of cou-
plings, while as the size increases, the effective exponents
converge towards trivial values which are characteristic of
a first-order regime. The ratio β/ν = 0 is indeed charac-
teristic of a discontinuity of the order parameter, while
γ/ν = 2 is consistent with this discontinuity and with the
scaling law 2β/ν + γ/ν = d. This behaviour of effective
exponents is the signature that the aperiodic fluctuations
are eventually irrelevant. This is corroborated by the fact
that the crossover takes place at larger sizes when the
perturbation amplitude becomes stronger (r = 10).

On the contrary, the two other aperiodic sequences
exhibit power-law behaviours with non-trivial exponents.
Since a second-order phase transition occurs for these se-
quences, the question of the stability of the new fixed
point has to be considered. A numerical study at differ-
ent ratios of interactions5 r = 0.2, 2, 3, 5, and 10 shows
that the corresponding exponents remain stable for strong

4 One can nevertheless mention that the smallest strip size is
not of great value, since it is smaller than the correlation length
of the pure model at the transition point in the disordered
phase [53].

5 The simulations are more complete in the case r = 5, since
we have one size less for the other values.
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Fig. 9. Effective size-dependent exponents associated to the
susceptibility, magnetization, and energy density difference
(dotted line: PS, dot-dashed line: TM, long-dashed line: TF,
and solid line: PF) for r = 5. Arrows on the right of the figure
demarcate the curves corresponding to γ/ν and −β/ν.

enough perturbations (r not too close to the pure system
value 1).

The numerical results of power-law fits in the linear
part of log-log plots are given in Table 3 for PS, TM, PF
and TF sequences. Since the values deduced from these
power-law fits seem to remain stable with respect to the
perturbation amplitude, we can use the effective expo-
nents (Fig. 9) to determine a more accurate value of the
critical exponents deduced from the extrapolation at infi-
nite size. The results are given in Table 4 for all sequences
at r = 5, for which value we have the more exhaustive nu-
merical results. Log-periodic oscillations again appear in
the behaviour of the energy density combination in the TF
sequence, but the tendency is coherent with the behaviour
of PF sequence.

From these values of the critical exponents, we can
deduce the scaling dimensions associated to the tempera-
ture and the magnetic field, yt = d−(1− α)/ν ≈ 1.00 and
yh = d−β/ν = (d+ γ/ν)/2 ≈ 1.50 at the new fixed point
for PF and TF. It could be surprising to obtain, within the
precision of our results, the same fixed point for these ape-
riodic perturbations, but we can mention here that both
of them have the same wandering exponent ω = 0.

4.3 Surface properties

The surface properties can also be investigated, and here
we ask if the aperiodic perturbations are also liable to
modify the surface critical behaviour. We determined nu-
merically the value of the order parameter at both surfaces
j = 1 and j = pL for the four sequences considered. It
gives the corresponding exponents, called β1/ν and βpL/ν,
respectively. The log-log plots are shown in Figure 10 and
the exponents, deduced from the slopes of log-log plots in
the linear regime, are given in Table 5.

Table 3. Bulk critical exponents obtained by the slope of
finite-size scaling results for the fours sequences. The numbers
in parentheses give the estimated uncertainty in the last digit.

PS TM

β/ν γ/ν β/ν γ/ν

r = 0.2 0.046(6) 2.01(1) 0.10(3) 1.81(7)

r = 5. 0.072(4) 1.97(1) 0.08(2) 1.90(5)

r = 10. 0.045(2) 2.02(1) crossa cross

PF TF

β/ν γ/ν β/ν γ/ν

r = 2. 0.464(7) 1.13(2) –b –

r = 3. 0.475(8) 1.07(2) – –

r = 5. 0.480(3) 1.017(9) 0.43(2) 1.15(2)

r = 10. 0.49(1) 1.01(1) 0.44(2) 1.09(3)

r = 0.2 0.46(1) 1.04(2) 0.43(1) 1.15(2)

(1− α)/ν

PS TM PF TF

r = 5. 0.05(4) oscc 1.015(4) osc

a “cross” means that the crossover is still too strong to allow
any linear regime in the log-log plots.
b The symbol – means that the corresponding runs have not
been performed.
c “osc” means that the log-periodic oscillating behaviour does
not allow any precise estimation of the exponent.

Table 4. Bulk critical exponents obtained by extrapolation at
infinite size of finite-size scaling results for the sequences PS,
TM, PF and TF with a ratio r = 5.

PS TM PF TF

β/ν 0.012 0.020 0.499 0.508

γ/ν 1.986 1.993 0.995 1.009

(1− α)/ν 0.05 osca 1.001 osc

a “osc” means that the log-periodic oscillating behaviour does
not allow any precise estimation of the exponent.

We can observe that the PS and TM systems exhibit
analogous singularities at the surfaces. It is known in the
pure case that, even with a first-order phase transition in
the bulk of the system, a second-order phase transition is
obtained at the surface. The critical exponents keep con-
stant values around 0.6 independently of the interaction
ratio r. In the case of PF and TF sequences, a second-order
regime which depends on the coupling ratio is obtained.
The transition is strengthened when the coupling are
sufficiently enhanced, and one can even observe a first-
order transition (in the case of PF) at the surface6. This

6 This first-order transition is only possible here because the
system being two-dimensional, the surface alone cannot order
above the critical temperature where the bulk is not ordered.
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Table 5. Surface critical exponentsa obtained by the slope of
finite-size scaling results for the four sequences.

PS TM

β1/ν β4L/ν β1/ν β4L/ν

r = 5. 0.60(1) 0.59(1) 0.55(2) oscb

r = 10. 0.60(1) 0.60(1) crossc cross

r = 0.2 0.56(1) 0.61(1) 0.60(2) osc

PF TF

β1/ν β4L/ν β1/ν β3L/ν

r = 2. 0.013(3) 0.58(1) –d –

r = 3. 0.0023(6) 0.58(1) – –

r = 5. 0.0000(0) 0.58(1) 0.530(4) 0.17(1)

r = 10. 0.0000(0) 0.58(1) 0.532(2) 0.095(3)

r = 0.2 0.54(1) 0.000(0) 0.19(1) 0.61(2)

aThe numbers in parentheses give the estimated uncertainty
in the last digit.
b “osc” means that the log-periodic oscillating behaviour does
not allow any precise estimation of the exponent.
c “cross” means that the crossover is still too strong to allow
any linear regime in the log-log plots.
d The symbol – means that the corresponding runs have not
been performed.

result can be understood by the behaviour of the average
coupling at a length scale n in the vicinity of the left sur-
face for example, K̄n, compared to the asymptotic average
coupling K̄∞:

Rn =
K̄n

K̄∞
=

ρn(r − 1) + 1

ρ∞(r − 1) + 1
, ρn =

1

n

n∑
k=1

fk. (16)

This ratio is always greater than 1 when r > 1 for PF
and produces a significative enhancement of the interac-
tions close to the boundary, leading to a decrease of the
exponent of the surface magnetization. The contrary hap-
pens with TF as shown in Figure 11. We have also checked
that these exponents are characteristic not only of the lo-
cal boundary behaviour, but also of an average surface
property, since the average of the order parameter over
a few rows (from 2 to 10) in the vicinity of the surface
reproduces the same exponents.

4.4 Crossover effect or marginal variation
of the exponents for PF and TF sequences?

The question one poses in this section is whether the small
observed variations of the critical exponents in the second-
order phase transition regime results from a crossover ef-
fect or from a marginal behaviour. It is interesting here to

In higher dimensions, this regime should lead to a surface
transition.
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Fig. 10. Local surface magnetization at both ends of the sys-
tem for the four sequences considered in the text. The curves
have been shifted for clarity.
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Fig. 11. Average coupling at a length scale n from the left
surface for the sequences PF, TM and TF (r = 2). The inter-
actions are enhanced, on average, close to the surface for PF,
while they are reduced for TF, and remain constant in the case
of TM.

make a comparison with what occurs in the Ising model
case q = 2. For this model, the PF and TF sequences are
known to lead to a marginal behaviour with continuously
varying critical exponents. The surface properties of this
system have been intensively investigated [33,35], but the
coupling distribution used here being different from the
one used in previous works, we cannot directly compare
the values of the exponents. We performed a few simu-
lations for q = 2, and the results are given in Table 6.
It appears clearly that the values of the different criti-
cal exponents exhibit, as expected, a continuous variation
with the amplitude of the interactions. The aim of these
supplementary simulations is to show unambiguously
that a marginal variation of the exponents is strong
enough to be distinguished numerically from the crossover
effect at small perturbations. Our results suggest that the
small variation observed in the Potts model case is prob-
ably due to this latter situation.
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Table 6. Bulk and surface critical exponentsa obtained by the
slope of finite-size scaling results for PF sequences in the case
of the Ising model q = 2.

r β/ν γ/ν β1/ν β4L/ν

0.2 0.337(2) 1.37(1) 0.497(1) 0.0203(4)

5 0.360(2) 1.351(9) 0.0176(7) 0.517(3)

10 0.407(1) 1.233(6) 0.0044(2) 0.525(4)

aThe numbers in parentheses give the estimated uncertainty
in the last digit.
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Fig. 12. Evolution of the size-dependent effective exponents
for the two types of aperiodic sequences.

5 Conclusion

In this paper, we have shown that the deterministic fluctu-
ations generated by an aperiodic modulation of nearest-
neighbour couplings in the eight-state Potts model pro-
duce a softening of the transition, and are even liable
to induce a second-order phase transition. It happens
when the fluctuations around the average coupling are
strong enough, and it is the case for the Paper-Folding
and Three-Folding sequences, although they are charac-
terized by a vanishing wandering exponent. In the case
of the Thue-Morse sequence, the wandering exponent be-
ing −∞, the transition remains of first-order, and the
scaling dimensions keep their pure values. These results
are consistent with Luck’s criterion [23], provided that
we replace the correlation-length exponent ν by its triv-
ial value 1/yt = 1/d at the first-order fixed point. The
crossover exponent associated to the aperiodic distribu-
tion Φ = 1 + (ω − 1)/d is then positive (relevant per-
turbation) for PF and TF sequences while it is negative
(irrelevant) in the case of TM sequence.

The analysis of the bulk properties shows that the new
fixed point exponents (PF and TF) are stable, i.e. do not
depend, up to small crossover effects, on the value of the
perturbation amplitude. This is clearly different from the

marginal behaviour encountered for similar sequences in
the Ising model case. We can furthermore notice that the
new universality class seems to be robust, i.e. the same
for both sequences, a result which is not a priori obvi-
ous. One can nevertheless mention that our results are
coherent with the stability of the new fixed point, which
requires a non-positive value for the crossover exponent
Φ′ in the second-order regime. With ω = 0, Φ′ takes the
value Φ′ = 1−ν at the new fixed point. Using hyperscaling
relation α = 2−dν (which should hold, unless anisotropic
behaviour is found), the value α ' 0, obtained numeri-
cally for PF, leads to ν ' 1 and thus Φ′ ' 0. It seems rea-
sonable to propose a renormalization group sketch, illus-
trated by the evolution of the effective exponents, where
the two possible sets of exponents should correspond to
two different fixed points, the stability of which depend
on the strength of fluctuations (i.e. the value of the wan-
dering exponent). The two types of situations are shown in
Figure 12. The periodic system, as it can be seen in Fig-
ure 9, is not influenced by the existence of the second fixed
point.

The surface magnetization has also been analyzed and
analogous conclusions can be given. It is interesting to
notice that a first-order surface transition (with a second-
order regime in the bulk) can be induced in the case of
PF, i.e. the exact contrary of the pure model behaviour.

There are still some open questions concerning aperi-
odic perturbations in these systems. A possible anisotropic
scaling behaviour could be obtained in the second-order
induced regime, since it occurs in the Ising model already.
One should also investigate aperiodic sequences with di-
verging fluctuations characterized by a positive wandering
exponent, like Rudin-Shapiro for example. A second-order
transition should also be obtained, but its universality
class could be different.

We gratefully acknowledge Löıc Turban for stimulating discus-
sions, and PE B thanks Prof. Kurt Binder for hospitality in
Mainz. We also thank the referee for his/her constructive crit-
icisms. This work was supported by CNIMAT under project
No 155C98 and by the Centre Charles Hermite in Nancy, and
by the CNUSC under project n◦ C981009.

References

1. A. Aharony, J. Magn. Magn. Mater. 7, 198 (1978).
2. T.C. Lubensky, in Ill-condensed matter, École d’été de
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